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ABSTRACT 

The paper investigates the analytical and numerical solution of MHD natural convection of grade three of 

a non-Newtonian Nanofluid flow between two vertical flat plates through a porous medium under the influence 

of non-Darcy resistance force, viscous dissipation, and heat generation/absorption. Analytically the nonlinear 

partial differential equations describing the present problem are solved using Multi−step differential transform 

method (MDTM) one of the most successful approaches for calculating an approximate solution to a system's 

nonlinear differential equations [1]. Numerically paired linearized differential (momentum and energy) 

equations are transformed into a linear system of algebraic equations using the finite difference method (FDM). 

Graphs and tables are used to display the effects of different parameters on velocity and temperature. The 

comparisons between current results and available previous results are listed in the tables, which indicate that 

the current answers are very similar to the past answers. The study found that (MDTM) and (FDM) are powerful 

approaches for solving non-linear differential equations such as this problem.  

Keywords: Natural convection Nanofluid, Darcy and non-Darcy medium, viscous dissipation, Heat 

Generation/Absorption. 
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 INTRODUCTION 

Because of their numerous industrial and technical uses, non-Newtonian fluids have gained more attention 

and importance in recent years than Newtonian fluids. When modelling non-Newtonian incompressible fluid 

flow, the differential equations that arise are very nonlinear and difficult [1]. The majority of fluid mechanics 

and heat transfer issues are nonlinear by definition. Ordinary or partial nonlinear differential equations can be 

used to simulate these issues and phenomena in order to determine their behavior in the environment. The 

majority of the physical and mechanical issues are defined by a set of paired nonlinear differential equations. 

Natural convection, for example, has a system of coupled nonlinear differential equations that arise in a variety 

of physical and technical settings such as "geothermal systems, chemical catalytic reactors, heat exchangers, 

and so on" [2-3]. 

 (DTM) which is based on the Taylor series, an analytical solution, which has lately been widely employed 

in many issues, is one of the easy and dependable approaches for the answer to a system of nonlinear paired 

differential equations [3]. It generates a polynomial answer as an analytical solution. In fact, DTM differs from 

the usual high-order Taylor series approach, which needs the symbolic computation of the data functions' 

essential derivatives [11]. The (DTM) technique was initially used in the field of engineering by [12]. Recently, 

this method attracted many authors to solve the nonlinear equations [14-19]. 

When analytical answers are unattainable or very difficult, and we need to compare analytical and 

experimental approaches, numerical methods are very useful tools for solving highly nonlinear differential 

equations. Because there is no accurate analytic solution for all nonlinear equations, numerical methods have 

been widely employed to solve them. To obtain the needed precision, iterative approaches must be used to 

answer the linearized differential equations. Because of its simplicity, (FDM) is commonly used for solving 

differential equations, both "linear or nonlinear" [3] and [13]. 

Natural convection of non-Newtonian fluids has been documented in several studies [3-10]. Inside two 

parallel orthogonal flat plates, a non-Newtonian fluid was studied [20-21]. For the natural convective dissipative 

heat transfer of an incompressible third-grade non-Newtonian fluid moving through an infinite porous plate 

embedded in a Darcy–Forchheimer porous medium, an analytic approximate solution is presented [22]. Non-

Darcy fully developed mixed convection in a porous medium channel with heat generation/absorption and 

hydromagnetic effects presented by [23]. In addition, other researchers have presented a variety of models and 

methodologies for studying convective flows of nanofluids [24-30]. 
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The purpose of this work is to investigate the analytical and numerical solution of MHD natural convection 

of grade three of a non- Newtonian Nanofluid flow Inside two parallel orthogonal flat plates through a porous 

medium considering the effects of non- Darcy, viscous dissipation, and heat generation/absorption analytically 

and numerically using (MDTM) and (FDM). With different values of the parameters, (nanoparticle volume 

fraction, viscous dissipation viscosity parameter, porosity parameter, Hartman number, non-Darcy parameter, 

Eckert number, Prandtl number, and heat generation/absorption) the variance distribution of velocity and 

temperature was that govern the problem are presented. Finally, Comparisons to recently published works are 

made and demonstrated that the present results have high accuracy and are found to be in excellent agreement. 

 MATHEMATICAL FORMULATION 

A diagram of the problem under investigation is depicted in Fig (1). It is made up of two vertically 

positioned flat plates. A non-Newtonian fluid is contained on two flat walls separated by 2b. At x = +b and x = 

−b, the walls are kept at constant temperatures T1 and T2, respectively, with T1 more than T2. The fluid near the 

wall at x = −b rises, whereas the fluid near the wall at x = +b falls, due to the temperature differential [33]. 

Copper is included in the fluid, which is a water-based nanofluid. The thermal equilibrium between the base 

fluid and the nanoparticles is assumed, with no slide between them.  

Table (1) lists the nanofluid's thermo-physical properties [31-32]. 

Material Density (𝜌) 

(kg/m3) 

Cp  

(J/Kg.k) 

K (w/m.k) 𝛽 x 105   (k -1) 

Pure water 997.1 4179 0.613 21 

Copper 8933 385 401 1.67 

 

The effective density-𝜌𝑛𝑓 , the effective dynamic viscosity-𝜇𝑛𝑓 , the heat capacitance-(𝜌 ∁𝑝)𝑛𝑓  and the 

thermal conductivity-𝜅𝑛𝑓   of the Nanofluid can be expressed by the solid volume fraction  𝜑 as: 

𝜌𝑛𝑓= 𝜌𝑓 (1 - 𝜑) + 𝜌𝑓  𝜑                                                                                                    (1) 

𝜇𝑛𝑓  = 
𝜇𝑓

(1 − 𝜑)2.5                                                                                                                  (2)                                                                                                                                                                                           

(𝜌 ∁𝑝)𝑛𝑓  = (𝜌 ∁𝑝)𝑓  (1 −  𝜑) + (𝜌 ∁𝑝)𝑠 𝜑                                                                      (3)                                                                                                                                                

𝜅𝑛𝑓

𝜅𝑓
 = 

𝜅𝑠+ 2 𝜅𝑓−2 𝜑 ( 𝜅𝑓 − 𝜅𝑠)

𝜅𝑠+ 2 𝜅𝑓 + 𝜑 (𝜅𝑓 − 𝜅𝑠)
                                                                                                (4)                                                                                                                                                                      

𝜎𝑛𝑓

𝜎𝑓
 = 1 +  

3 ( 
𝜎𝑠
𝜎𝑓

  − 1) 𝜑

( 
𝜎𝑠
𝜎𝑓

 + 2) − (  
𝜎𝑠
𝜎𝑓

− 1 )

                                                                                            (5)  
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Figure 1. shows the motion of nanofluid between two vertical flat walls 

 

The governing "momentum-energy" equations are developed, accordingly, based on the assumptions, as 

[1], [3], and [14]:       

𝜇𝑛𝑓
𝑑2𝑢

𝑑𝑥2  +  6𝛽3 (
𝑑𝑢

𝑑𝑥
)

2 𝑑2𝑢

𝑑𝑥2  +  𝜌0𝛾(𝑇 − 𝑇𝑚) g − 
𝜇𝑛𝑓

𝐾𝑛𝑓
 𝑢 −  

𝜎𝑛𝑓𝛽0
2

𝜌𝑛𝑓
 𝑢 −  

𝜌0 𝐵

𝐾𝑛𝑓
 𝑢2 = 0 ,   (6) 

𝐾𝑛𝑓  
𝑑2𝑇

𝑑𝑥2  +  2𝛽3 (
𝑑𝑢

𝑑𝑥
)

4

+ 𝜇𝑛𝑓 (
𝑑𝑢

𝑑𝑥
)

2

+  𝑄0(𝑇 − 𝑇𝑚)  = 0,                                            (7)                                                           

Rajagopal [7] has demonstrated that by using the similarity variables: 

𝑣 =
𝑢

𝑢0
, 𝜂 =

𝑥

𝑏
  and  θ =

𝑇− 𝑇𝑚

𝑇1− 𝑇2
,                                                                                         (8) 

After substituting the above parameters,  Eqs. (6) and (7) can be simplified to shown below: 

𝑑2𝑣

𝑑𝜂2  +  6𝛿(1 − 𝜑)2.5 (
𝑑𝑣

𝑑𝜂
)

2 𝑑2𝑣

𝑑𝜂2  + θ −  
𝑃

𝐵
 𝑣 − 𝐴 𝐻𝑎

2 (1 − 𝜑)2.5𝑣 −
 𝐹𝑠

𝐵
𝑣2 = 0           (9)      

𝑑2𝜃

𝑑𝜂2  +  2𝛿 𝐸𝑐  𝑃𝑟 (
𝑑𝑣

𝑑𝜂
)

4

+  (
𝐸𝑐   𝑃𝑟

𝐵
) (1 − 𝜑)− 2.5 (

𝑑𝑣

𝑑𝜂
)

2

+  
𝛼

𝐵
 𝜃 = 0 ,                              (10)      

 

Where A = 
𝜎𝑛𝑓

𝜎𝑓
, B = 

𝜅𝑛𝑓

𝜅𝑓
, 𝜇𝑛𝑓  = 

𝜇𝑓

(1 − 𝜑)2.5 , 𝑣𝜊 = 
𝜌0𝛾𝑔𝑏2( 𝑇1−  𝑇2)

𝜇𝑛𝑓
, 𝛿 =  

𝛽3  𝑢0
2

𝜇𝑓 𝑏2  is dimensionless non-Newtonian 

viscosity, , 𝑃 =  
𝑏2

𝑘𝑓
    is porosity parameter, 𝐻𝑎

2 =  
𝜎𝑓 𝛽0

2  𝑏2

 𝜇𝑓
  is Hartman number, 𝐹𝑠 =  

𝜌0 𝐵 𝑢0  𝑏2

 𝜇𝑓 𝑘𝑓
  non-Darcy, 

𝐸𝑐 =  
𝑢0

2

𝑐𝑓 (𝑇1−  𝑇2)
  is Eckert number, 𝑃𝑟 =  

𝜇𝑓 𝑐𝑓

𝑘𝑓
   is Prandtl number,  and  𝛼 =  

𝑄0  𝑏2

𝑘𝑓
    is dimensionless Heat 

generation (source)/heat absorption (sink) parameter. 

The relevant boundary conditions are as follows: 
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𝑣(−1) = 0 ,  𝜃(−1) =  
1

2
 ,                                                                                            (11) 

𝑣(1) = 0,   𝜃(1) = − 
1

2
 .                                                                                              (12) 

   

 In Eq. (10), heat generation is indicated by  𝛼 > 0   whereas heat absorption is shown by 

𝛼 < 0.  Also, 𝐵𝑟 = 𝐸𝑐𝑃𝑟 =
𝜇𝑓 𝑢0

2

𝑘𝑓(𝑇1−  𝑇2)
 [3], this is known as the Brinkman number, and there are 

significant correlations between Brinkman number and viscous dissipation, where the 

Brinkman number (𝐵𝑟 =
viscous dissipation 

conduction
) is the ratio of viscous dissipation to conduction. 

 

 ANALYTICAL METHOD FOR THE SOLUTION 

It is known that when using (DTM) in systems of strong nonlinear differential equations or with an infinite 

domain, the results we get are diverginse. Furthermore, power series are ineffective when the independent 

variable has large values. To address this problem, the (MDTM) has been created for the analytical solution of 

differential equations, and it is discussed in this section.  

 

By Appling differential transformation theorems on Eqs. (9) and (10), can be obtained in the following 

recursive relations: 

 
(k + 1)(k + 2)V(k + 2) + 6𝛿 (1 − 𝜑)2.5 ∑ ∑ (𝑟1 + 1)(𝑟2 − 𝑟1 + 1)(k − 𝑟2 + 1)(k − 𝑟2 +

𝑟2
𝑟1=0

𝑘
𝑟2=0

2)V(𝑟1 + 1)V(𝑟2 − 𝑟1 + 1)V(k − 𝑟2 + 2) +  Θ(k) −
𝑃

𝐵
V(k) − A𝐻𝑎

2(1 − 𝜑)2.5V(k) −
 𝐹𝑠

𝐵
 ∑ v(k)v(k −𝑘

𝑟=0

 r) = 0                                                                                                                                                   (13) 

 

(𝑘 + 1)(𝑘 + 2) 𝛩(𝑘 + 2) + 2 𝛿 𝐸𝑐  𝑃𝑟 ∑ ∑ ∑ (𝑟1 + 1)(𝑟2 − 𝑟1 + 1)(𝑟3 − 𝑟2 + 1)(𝑘 − 𝑟3 +
𝑟2
𝑟1=0

𝑟3
𝑟2=0

𝑘
𝑟3=0

1)𝑉(𝑟1 + 1)𝑉(𝑟2 − 𝑟1 + 1)𝑉(𝑟3 − 𝑟2 + 1) 𝑉(𝑘 − 𝑟3 + 1) +  
𝐸𝑐  𝑃𝑟

𝐵
(1 −  𝜑)− 2.5   ∑ (𝑟 + 1)(𝑘 − 𝑟 +𝑘

𝑟=0

1)𝑉(𝑟 + 1)  𝑉(𝑘 − 𝑟 + 1) +
𝛼

𝐵
𝛩(𝑘) = 0                                                                                           (14) 

The differential transforms of u(𝜂) and θ(𝜂) are V (k) and (k), respectively. 

 

 

The boundary conditions' differential transform (11-12) is as follows: 
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V(0) = 0, 𝛩(0) =
1

2
,                                                                                   (15)  ∑ 𝑣(𝑘)2𝑘 = 0𝑖

𝑘=0  ,  

∑ Θ(𝑘)2𝑘𝑖
𝑘=0 = −

1

2
 ,                                                                                                            (16)  

We can consider the following boundary conditions (11−12): 

 v(−1) = 0, θ(−1)=  
1

2
   ,                                                                                              (17)   

     

 v`(-1) =𝜆 , θ`(−1)=  𝜔 ,                                                                                               (18)   

Then, differential transform of (17-18) are given by:        

 V(0) = 0, 𝛩(0) =
1

2
,                                                                                                     (19)  

 𝑉(1) = 𝜆, 𝛩(0) = 𝜔,                                                                                                    (20) 

Moreover, by substituting equations (19) and (20) into equations (13) and (14) and by the recursive method 

we can calculate other values of V(k) and Θ(K).  

 A NUMERICAL METHOD FOR THE SOLUTION 

Both, non-linear coupled ordinary differential equations (9-10) and boundary conditions (11-12) are 

answered for the flow velocity and temperature using (FDM). Because nonlinearity of this system, the following 

linearized form should be used: 

𝑑2𝑣

𝑑𝜂2  ((1 +  6𝛿(1 − 𝜑)2.5 (
𝑑�̅�

𝑑𝜂
)

2
)) + 𝜃 − ((𝐴𝐻𝑎

2 (1 − 𝜑)2.5 +  
𝑃

𝐵
) −

 𝐹𝑠

𝐵
 𝑣̅) 𝑣 = 0, (21)  

 

 
𝑑2𝜃

𝑑𝜂2 + 𝐸𝑐  𝑃𝑟
𝑑𝑣

𝑑𝜂
(2𝛿 (

𝑑�̅�

𝑑𝜂
)

3

+
(1−𝜑)− 2.5

𝐵
 

𝑑�̅�

𝑑𝜂
)

3

+  
𝛼

𝐵
𝜃 = 0 ,                                             (22)                                                                                                                             

                                         

Where bar notation denotes the iterated terms that convert Eqs. (9-10) to a linearized one. 
 

By applying Taylor’s expansions of the dependent variables about the central point for Eqs. (21 -22) to 

obtain a system of algebraic equations [3]. 

 

𝑑𝑣𝑖

𝑑𝜂
=

𝑣𝑖+1−𝑣𝑖−1

∆
+ 𝑜(∆2)                                                                                                (23) 

𝑑2𝑣𝑖

𝑑𝜂2 =
𝑣𝑖+1−2𝑣𝑖+𝑣𝑖−1

∆2 + 𝑜(∆2)                                                                                        (24) 

𝑑2𝜃𝑖

𝑑𝜂2 =
𝜃𝑖+1−2𝜃𝑖+𝜃𝑖−1

∆2 + 𝑜(∆2)                                                                                       (25) 
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Where i = 1, 2, 3, ……, m+1 and m the number of subintervals of the finite domain of solution ( −1 < 𝜂 <

1). 

 
 

 RESULTS AND DISCUSSION 
 

In this paper, the (FDM) and (MDTM) is applied successfully to the present problem. Tables and graphics 

of the results are really helpful to demonstrate the efficiency and accuracy of (FDM) and (MDTM) for the 

problem stated in this work. In order to ensure that the current results are accurate, we compared these results 

with the previously published work. Figures (2−8) (a) and (b) indicates the effects of δ, P, Ha, Fs, 𝐵𝑟 , 𝛼 and 𝜙 

on  V (η) and θ(η) profiles.  

Figures 2 (a) and 2 (b), are shown the effect of viscoelastic parameter δ on the velocity and temperature 

profiles, when other parameters are constants. The dimensionless non-Newtonian viscosity shows how 

important the inertia impact is in comparison to the viscous effect. From figures 2 (a) and 2 (b), It has been 

noticed that as the viscoelastic parameter δ is increased, V (η) and θ(η) decrease. 

It is also found that δ has a greater impact on V (η) than on θ(η). 

It can be seen that increasing in P, Ha, and Fs leads to a decrease in V (η) Figures (3−5) (a) because of its 

resistance to motion and the rate of shear increases and causes a decrease in the boundary layer thickness. 

The effect of Brinkman number 𝐵𝑟 , Heat generation (source)/heat absorption (sink) parameter α and the 

nanoparticle concentration 𝜙 is presented in the Figures (6−8) (a) As it is shown, the velocity distribution V (η) 

increases slightly by increasing values of 𝐵𝑟 , α and 𝜙 due to the improvement in the energy exchange rate and 

increased the heat dissipation. 

In addition, the effect of Brinkman number 𝐵𝑟 , Heat generation (source)/heat absorption (sink) parameter 

α, and the nanoparticle concentration 𝜙 is presented in the Figures (6−8) (b) as it is shown, the temperature 

distribution θ(η) increases by increasing values of 𝐵𝑟 , α and 𝜙 due to of dissipation. 

 

Also, it can be seen that the effect of P, Ha and Fs on θ(η) is very little almost non-existent Figures (3−5) 

(b), because P, Ha and Fs does not explicitly occur in the energy equation. Therefore, it can be concluded that 

P, Ha, and Fs have a negligible impact on the flow of θ(η). 
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                                                       (a)                                                                                                    (b) 

Figure 2:  Variation of  V (η) and θ(η) at different values of  δ when P=1, Ha =1, Fs=1, Ec = 1, Pr = 1, 𝝓 = 𝟎  and 𝜶=1.     

   

              

     
 
                                                  (a)                                                                                      (b) 

Figure 3:  Variation of  V (η) and θ(η) at different values of  P when δ =1, Ha =1, Fs=1, Ec = 1, Pr = 1, 𝝓 = 𝟎  and 𝜶=1. 
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                                         (a)                                                                                           (b) 

Figure 4:  Variation of  V (η) and θ(η) at different values of  Ha when δ =1, P =1, Fs=1, Ec = 1, Pr = 1, 𝝓 = 𝟎  and 𝜶=1. 

 
 

       

                                                     (a)                                                                              (b) 

Figure 5:  Variation of  V (η) and θ(η) at different values of  Fs when δ =1, P =1, Ha =1, Ec = 1, Pr = 1, 𝝓 = 𝟎 and 𝜶=1. 
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                                               (a)                                                                                             (b) 

Figure 6:  Variation of  V (η) and θ(η) at different values of  Br when δ =1, P =1, Ha =1, Fs = 1, Pr = 1, 𝝓 = 𝟎 and 𝜶=1. 

 

          

(a)                                                                                      (b) 

Figure 7:  Variation of  V (η) and θ(η) at different values of  𝜶 when δ =1, P =1, Ha =1, Fs = 1, Ec = 1, 𝝓 = 𝟎 and Pr =1. 
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                                  (a)                                                                    (b) 

Figure 8:  Variation of  V (η) and θ(η) at different values of  𝝓 when 𝜶 = 𝟏 δ =1, P =1, Ha =1, Fs = 1, Ec = 1 and Pr 

=1. 

In addition, tables (2−3)  shows comparison between (MDTM) and (FDM) with ((LSM) and (GM) [10])). 

As can be seen, this approximate analytical and numerical solution agree with the solutions that are relevant. 
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Table 2: Comparison solution by (MDTM) and(FDM)  with ((LSM) and (GM) [10])  for V (η) when δ =1, P=1,  Ha 

=1, Fs=0, Ec = 1, Pr = 1,  𝝓 = 𝟎 and 𝜶=1. 

η 
                            Present V (η)          v(η) 

[10] MDTM FDM LSM GM 

−

1 

0 0 0 0 

−

0.9 

0.013146724396251194    

0.013094948383748 

0.01296 0.01301

1 −

0.8 

0.022204193479333386    

0.021945388039385 

0.021828 0.02191

3 −

0.7 

0.02755244209846112    

0.027098248212558 

0.027059 0.02716

3 −

0.6 

0.029639149959951303    

0.029069721396927 

0.029106 0.02921

8 -0.5 0.028947913723925744    

0.028351326142150 

0.028426 0.02853

4 -

0.4 

 

0.025971060940111916    

0.025415087624897 

0.025473 0.02556

8 -

0.3 

0.021192239867421657    

0.020717980854592 

0.0207 0.02077

5 -

0.2 

0.01507875939700477    

0.014705770388928 

0.014563 0.01461

3 -

0.1 

0.008081105071870518    

0.007816371593528 

0.007517 0.00753

8 0 0.0006368290320354    

0.000482851586660 

1.57E-05 6.53E-

06 0.1 

0.2 

0.3 

0.4 

0. 

−0.006823275339026781   -

0.006863817102015 

-0.00749 -

0.00753 0.2 

0. 

−0.013868065188479786   -

0.013792140586064 

-0.01453 -0.0146 

0.3 

0. 

−0.02005894400597227   -

0.019867517706769 

-0.02067 -

0.02076 0.4 

0 

−0.024943689060276143   -

0.024649576838127 

-0.02545 -

0.02556 0.5 

00 

−0.02805253285788286   -

0.027689326979685 

-0.0284 -

0.02852 0.6 −0.02889854812818517   -

0.028526012066211 

-0.02909 -

0.02921 0.7 −0.026985110954762345   -

0.026683553217907 

-0.02704 -

0.02716 0.8 −0.021823042419956796   -

0.021666457794391 

-0.02182 -

0.02191 0.9 −0.01295756242140307   -

0.012955066474776 

-0.01295 -

0.01301 1 5.39770700205 × 10−8                    0 0 0 

 
Table 3: Comparison solution by  (MDTM) and(FDM)  with ((LSM) and (GM) [10]) for θ (η) when δ =1, P=1,  Ha 

=1, Fs=0, Ec = 1, Pr = 1, 𝝓 = 𝟎 and 𝜶=1. 

η 
Present θ (η)                      θ (η) 

[10]        MDTM FDM LSM GM 

−

1 

0.5 0.5 0.5 0.5 

−

0.9 

0.46601291535587114 0.46564572059348

4 

0.4651

47 

0.465708161 

−

0.8 

0.42724083966415677 0.42672020151194

4 

0.4255

13 

0.426457054 

−

0.7 

0.3841456096762759 0.38358185751875

1 

0.3816

31 

0.382797641 

−

0.6 

0.3371967627858102 0.33663535990197

8 

0.3340

31 

0.335280886 

-

0.5 

0.2868770365169094 0.28632737459272

5 

0.2832

44 

0.28445775 

-

0.4 

 

0.23368653860682678 0.23314192399689

6 

0.2298

01 

0.230879199 

-

0.3 

0.17814518812252902 0.17759541263291

7 

0.1742

32 

0.175096193 
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-

0.2 

0.12079332678262349 0.12023136111228

0 

0.1170

69 

0.117659697 

-

0.1 

0.06219059768233506 0.06161489692170

9 

0.0588

42 

0.059120673 

0 0.0029132687030886395 0.00232705384206

4 

8.35E-

05 

3.01E-05 

0

.1 

0

.2 

0

.3 

0

.4 

0

. 

−0.0564498219531704 -

0.057041065349643 

-

0.05868 

-

0.059061105 0

.2 

0

. 

−0.11530255996406075 -

0.115894206017126 

-

0.11691 

-

0.117601934 0

.3 

0

. 

−0.17304800480170288 -

0.173638900120633 

-

0.17408 

-

0.175041439 0

.4 

0 

−0.22909596887627046 -

0.229689366423626 

-

0.22966 

-

0.230828656 0

.5 

0

0 

−0.2828717537695327 -

0.283473312427042 

-

0.28312 

-

0.284412623 0

.6 

−0.33382611181152283 -

0.334437578138167 

-

0.33392 

-

0.335242377 0

.7 

−0.3814465042884123 -

0.382053562483899 

-

0.38155 

-

0.382766955 0

.8 

−0.42526965424319774 -

0.425822374433679 

-

0.42545 

-

0.426435393 0

.9 

−0.4648952048945878 -

0.465279652679814 

-

0.46511 

-

0.465696729 1 -0.5 -0.5 -0.5 -0.5 

 

 CONCLUSION 

 
We used (MDTM) and (FDM) to calculate non-Darcy MHD natural convection of grade three of non-

Newtonian Nanofluid flow between two infinite parallel vertical plates via a porous medium with effects of 

viscous dissipation and heat generation/absorption in the current research. Figures illustrate effectiveness of δ, 

P, Ha, Fs, 𝑃𝑟 , 𝐸𝐶 , and 𝛼 on  V (η) and θ(η). Furthermore, the findings of this study show that nanoparticle volume 

fraction and viscous dissipation have an impact on velocity and temperature. Comparisons with available 

previously published works are performed and showed that the present methods for solutions and results have 

high accuracy and are found to be in excellent agreement as shown in the tables. The tables' findings are 

extremely beneficial in various engineering life applications. 
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