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ABSTRACT 

 

It is a new algorithm to find the exact solution of boundary value problems using the closed-form 

method using Laplace transforms method and a more accurate numerical solution of boundary value 

problems using fourth-order finite difference method (FOFDM). It is known that the Laplace 

transforms method gives a closed-form for initial value problems but in the present study, we were 

able to use it to find the exact solution of boundary value problems which is the novelty of the present 

study. Also, high-accurate numerical methods to solve linear boundary value problems which 

approximate to exact solutions. The uniqueness, convergence, and stability of the new technique 

(FOFDM) are verified and tested by comparisons with a closed-form method. 
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 INTRODUCTION 

Two-point boundary value problems have received considerable attention due to their importance 

in many areas of sciences and engineering. These types of differential equations arise very frequently 

in fluid mechanics, quantum mechanics, optimal control, chemical-reactor theory, aerodynamics, 

reaction-diffusion process, and geophysics [30].  

The most popular technique for solving differential equations numerically is the Runge-Kutta 

method. Three new Runge–Kutta methods are presented for numerical integration of systems of linear 

inhomogeneous ordinary differential equations (ODEs) with constant coefficients. Such ODEs arise 

in the numerical solution of partial differential equations governing linear wave phenomena [31]. A 

novel second-order prediction differential model is designed, and numerical solutions of this novel 

model are presented using the integrated strength of the Adams and explicit Runge–Kutta schemes 

[32]. A new special two-derivative Runge-Kutta type (STDRKT) methods involving the fourth 

derivative of the solution for solving third-order ordinary differential equations [33]. 

Finite difference method proposed for the solution of two-point boundary value problems has been 

widely applied [24-26]. They used the finite difference method (FDM) of second-order accuracy to 

solve the nonlinear system of differential equations. they observed that the velocity 

 reached the steady-state faster than temperature and nanoparticles concentration. Attia et al. [34] 

studied the effects of the-Drcian Forchheimer and Hall current resistances on the unsteady flow and 

heat transfer between two porous plates. they solved the governing partial differential equations, 

numerically, by the finite difference method FDM. Joule and viscous dissipations are 

 considered in the energy equation. Ewis [35] used a second-order accurate finite difference method to 

solve the governing equations of natural convection of non- Newtonian (RivlinEricksen) fluid flow 

and heat transfer under the influences of non-Darcy resistance force, constant pressure gradient, 

dissipation, and radiation. 

Various analytical and numerical techniques proposed for the solution of differential equations are 

available in the literature; some of these are Differential Transform Method [1-6], Rung-Kutta 4th 

Order Method [7], Bernoulli Polynomials [8], Cubic Spline Method [9], Sinc Collocation Method [10], 

Modified Picard Technique [11], Block Method [12-14], Adomian Decomposition Method [15-20], 

Homotopy Perturbation Method [21-23]. 

This work presented a new technique to solve boundary value problems using Laplace Transform 

and (FOFDM). The new technique presents an exact solution for boundary value problems. The other 

technique approximating to exact solution is (FOFDM), which has a very strong accuracy that 

approaches the exact solution. The novelty of the present paper is the new technique using Laplace 
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Transform and a more accurate solution using (FOFDM). The uniqueness, convergence, and stability 

of the new technique are verified and tested by comparisons with the exact solution. The provided 

comparisons highlight the effectiveness of the new approach using Laplace Transform and (FOFDM), 

which is convergent, stable, and highly accurate. 

 MODELLING 

Problem 1: Consider the following problem of a two-point boundary value 

𝜑′′(𝜂) + 3𝜑′(𝜂) + 2𝜑(𝜂) = 1,  

The appropriate boundary conditions are described as follows: 

𝜑(0) = 1 and 𝜑(1) = 0. 

Exact Solution using Laplace Transform 

Take the Laplace transform of both sides of the differential equation by applying the formulae 

for the Laplace transforms of derivatives: 

ℒ{𝜑′′(𝜂)} + 3ℒ{𝜑′(𝜂)} + 2ℒ{𝜑(𝜂)} = ℒ{1} 

𝑠2ℒ{𝜑} − 𝑠 𝜑(0) − 𝜑′(0) + 3[𝑠 ℒ{𝜑} − 𝜑(0)] + 2ℒ{𝜑} =
1

𝑠
                                                   (1′) 

Let 𝜑′(0) = 𝛼 and from the given boundary conditions 𝜑(0) = 0, then by substitution in Eq. 

(1′) and rearranging gives: 

ℒ{𝜑} =
1+3𝑠+𝛼 𝑠+𝑠2

𝑠(𝑠2+3𝑠+2)
                                                                                                                 (2′) 

𝜑 = ℒ−1 (
1+3𝑠+𝛼 𝑠+𝑠2

𝑠(𝑠2+3𝑠+2)
)                                                                                                                 (3′)    

When we convert  
1+3𝑠+𝛼 𝑠+𝑠2

𝑠(𝑠2+3𝑠+2)
 to a partial fraction, we obtain, 

1+3𝑠+𝛼 𝑠+𝑠2

𝑠(𝑠2+3𝑠+2)
=

𝐴

𝑠
+

𝐵

𝑠+2
+

𝐶

𝑠+1
                                                                                                         (4′)       

By resolving Eq. (4′), we get 

𝐴 =
1

2
, 𝐵 =

−(2 𝛼+1)

2
, and 𝐶 = 𝛼 + 1.                                                                                           (5′)                                    

When we substitution by (4′) and (5′) in Eq. (3′) gives, 

𝜑 = ℒ−1 (
1

2 𝑠
−

2 𝛼+1

2(𝑠+2)
+

𝛼+1

(𝑠+1)
)                                                                                                     (6′) 

The inverse Laplace equation gets, 

 𝜑 =
1

2
−

2 𝛼+1

2
𝑒−2𝜂 + (𝛼 + 1)𝑒−𝜂                                                                                              (7′) 

And by using 𝜑(1) = 0 in Eq. (7′), we get 

𝛼 =
(1−2𝑒−𝑒2)

2(−1+𝑒)
 , then by substitution in Eq. (7′), 
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𝜑(𝜂) =
1

2
𝑒−2𝜂 (−1 + 𝑒2𝜂 −

(1−2𝑒−𝑒2)

(−1+𝑒)
+ 2𝑒𝜂 (1 +

(1−2𝑒−𝑒2)

2(−1+𝑒)
))                          (8′) 

Then, Eq. (8′) in the simplest form: 

𝜑(𝜂) =
𝑒−2𝜂(𝑒+𝑒2−𝑒𝜂−𝑒2𝜂−𝑒2+𝜂+𝑒1+2𝜂)

2(−1+𝑒)
                                                                               (9′) 

 MODEL CONTROL 

The second and fourth-order finite difference method  

The finite domain  (0 < 𝜑 < 1) of the solution is divided into (𝑛 − 1) subintervals such that the 

mesh size is(ℎ =
1

𝑛−1
) with counter 𝑖 =  1, 2, 3, . . . . . , 𝑛. The linearized linear ordinary differential 

equation of (Problem 1) is transformed into a system of algebraic equations using the fourth-order 

difference schemes. The following (second and fourth-order) schemes are obtained by Taylor’s 

expansions about 𝜑𝑖 = (𝑖 − 1)ℎ. At   𝑛 = 1001 → ℎ =
1

1000
= 0.001, second and fourth-order 

difference schemes (10′-21′) should be applied to equation (Problem 1) to minimize round-off errors 

in computations [27-29]. 

Forward finite-difference formulas for first and second: 

✓ 𝜑′ =
1

2ℎ
(−3𝜑𝑖 + 4𝜑𝑖+1 − 𝜑𝑖+2) + 𝑂(ℎ2)                                                                    (10′) 

✓ 𝜑′′ =
1

ℎ2
(2𝜑𝑖 − 5 𝜑𝑖+1 + 4𝜑𝑖+2−𝜑𝑖+3) + 𝑂(ℎ2)                                                         (11′) 

✓  𝜑′ =
1

12ℎ
(−25𝜑𝑖 + 48𝜑𝑖+1 − 36𝜑𝑖+2 + 16𝜑𝑖+3 − 3𝜑𝑖+4) + 𝑂(ℎ4)                         (12′) 

✓  𝜑′′ =
1

12ℎ2
(45𝜑𝑖 − 154 𝜑𝑖+1 + 214𝜑𝑖+2−156𝜑𝑖+3 + 61𝜑𝑖+4−10𝜑𝑖+5) + 𝑂(ℎ4)   (13′)                                                                        

Backward finite-difference formulas for first and second derivative: 

✓ 𝜑′ =
1

2ℎ
(3𝜑𝑖 − 4𝜑𝑖−1 + 𝜑𝑖−2) + 𝑂(ℎ2)                                                                       (14′) 

✓ 𝜑′′ =
1

ℎ2
(2𝜑𝑖 − 5 𝜑𝑖−1 + 4𝜑𝑖−2−𝜑𝑖−3) + 𝑂(ℎ2)                                                        (15′) 

✓ 𝜑′ =
1

12ℎ
(25𝜑𝑖 − 48𝜑𝑖−1 + 36𝜑𝑖−2 − 16𝜑𝑖−3 + 3𝜑𝑖−4) + 𝑂(ℎ4)                             (16′) 

✓ 𝜑′′ =
1

12ℎ2
(45𝜑𝑖 − 154 𝜑𝑖−1 + 214𝜑𝑖−2−156𝜑𝑖−3 + 61𝜑𝑖−4−10𝜑𝑖−5) + 𝑂(ℎ4)   (17′)                                                     

Central finite-difference formulas for first and second derivative: 

✓ 𝜑′ =
1

2ℎ
(𝜑𝑖+1 − 𝜑𝑖−1) + 𝑂(ℎ2)                                                                                    (18′) 

✓ 𝜑′′ =
1

ℎ2
( 𝜑𝑖+1 − 2𝜑𝑖+𝜑𝑖−1) + 𝑂(ℎ2)                                                                         (19′) 

✓  𝜑′ =
1

12ℎ
(−𝜑𝑖+2 + 8𝜑𝑖+1 − 8𝜑𝑖−1 + 𝜑𝑖−2) + 𝑂(ℎ4)                                                 (20′) 

✓ 𝜑′′ =
1

12ℎ2
(− 𝜑𝑖+2 + 16𝜑𝑖+1 − 30𝜑𝑖 + 16𝜑𝑖−1−𝜑𝑖−2) + 𝑂(ℎ4)                               (21′) 
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Problem 2:  

Consider the following problem of a two-point boundary value 

𝜃′′(𝜂) − 𝜃(𝜂) + 4𝜂𝑒𝜂 = 0,                                                                         

The appropriate boundary conditions are described as follows: 

𝜃(0) = 0 and 𝜃(1) = 1. 

Exact Solution using Laplace Transform 

Take the Laplace transform of both sides of the differential equation by applying the formulae 

for the Laplace transforms of derivatives: 

ℒ{𝜃′′(𝜂)} − ℒ{𝜃(𝜂)} + 4ℒ{𝜂𝑒𝜂} = 0 

𝑠2ℒ{𝜃} − 𝑠 𝜃(0) − 𝜃′(0) − ℒ{𝜃} +
4

(𝑠−1)2
= 0                                                                            (1)                   

Let 𝜃′(0) = 𝛿 and from the given boundary conditions 𝜃(0) = 0, then by substitution in Eq. (1) 

and rearranging gives: 

ℒ{𝜃} =
−4+𝛿−2𝛿𝑠+𝛿𝑠2

(𝑠−1)2(𝑠2−1)
                                                                                                                     (2)                        

𝜃 = ℒ−1 (
−4+𝛿−2𝛿𝑠+𝛿𝑠2

(𝑠−1)2(𝑠2−1)
)                                                                                                               (3)                   

When we convert  
−4+𝛿−2𝛿𝑠+𝛿𝑠2

(𝑠−1)2(𝑠2−1)
 to a partial fraction, we obtain, 

−4+𝛿−2𝛿𝑠+𝛿𝑠2

(𝑠−1)2(𝑠2−1)
=

𝐴

𝑠−1
+

𝐵

(𝑠−1)2 +
𝐶

(𝑠−1)3 +
𝐷

𝑠+1
                                                                                  (4) 

By resolving Eq. (4), we get 

𝐴 =
𝛿−1

2
, 𝐵 = 1, 𝐶 = −2, and 𝐷 =

1−𝛿

2
.                                                                                       (5) 

When substitution by (4) and (5) in Eq. (3) gives, 

𝜃 = ℒ−1 (
𝛿−1

2(𝑠−1)
+

1

(𝑠−1)2 +
−2

(𝑠−1)3 +
1−𝛿

2(𝑠+1)
)                                                                                  (6) 

The inverse Laplace equation gets, 

 𝜃 =
𝛿−1

2
𝑒𝜂 + 𝜂𝑒𝜂 − 2𝜂2𝑒𝜂 +

1−𝛿

2
𝑒−𝜂 =

1

2
𝑒−𝜂(1 − 𝛿 + 𝑒2𝜂(−1 + 𝛿 + 2𝜂 − 2𝜂2))                (7) 

And by using 𝜃(1) = 1 in Eq. (7), we get 

𝛿 =
−1+2𝑒+𝑒2

−1+𝑒2  , then by substitution in Eq. (7) 

𝜃 =
1

2
𝑒−𝜂(1 −

−1+2𝑒+𝑒2

−1+𝑒2 + 𝑒2𝜂(−1 +
−1+2𝑒+𝑒2

−1+𝑒2 + 2𝜂 − 2𝜂2))                                                    (8)            

Then, Eq. (8) in the simplest form 

𝜃 =
𝑒−𝜂(−𝑒+𝑒1+2𝜂+𝑒2𝜂(−1+𝜂)𝜂−𝑒2+2𝜂(−1+𝜂)𝜂)

−1+𝑒2                                                                                   (9) 
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 NUMERICAL SOLUTION 

The second and fourth-order finite difference method  

The finite domain  (0 < 𝜃 < 1) of the solution is divided into (𝑛 − 1) subintervals such that the 

mesh size is(ℎ =
1

𝑛−1
) with counter 𝑖 =  1, 2, 3, . . . . . , 𝑛. The linearized linear ordinary differential 

equation of (Problem 1) is transformed into a system of algebraic equations using the fourth-order 

difference schemes. The following (second and fourth-order) schemes are obtained by Taylor’s 

expansions about 𝜃𝑖 = (𝑖 − 1)ℎ. At   𝑛 = 1001 → ℎ =
1

1000
= 0.001, second and fourth-order 

difference schemes (10-21) should be applied to equation (Problem 1) to minimize round-off errors in 

computations [27-29]. 

Forward finite-difference formulas for first and second: 

✓ 𝜃′ =
1

2ℎ
(−3𝜃𝑖 + 4𝜃𝑖+1 − 𝜃𝑖+2) + 𝑂(ℎ2)                                                                              (10) 

✓ 𝜃′′ =
1

ℎ2
(2𝜃𝑖 − 5 𝜃𝑖+1 + 4𝜃𝑖+2−𝜃𝑖+3) + 𝑂(ℎ2)                                                                   (11) 

✓  𝜃′ =
1

12ℎ
(−25𝜃𝑖 + 48𝜃𝑖+1 − 36𝜃𝑖+2 + 16𝜃𝑖+3 − 3𝜃𝑖+4) + 𝑂(ℎ4)                                    (12) 

✓  𝜃′′ =
1

12ℎ2
(45𝜃𝑖 − 154 𝜃𝑖+1 + 214𝜃𝑖+2−156𝜃𝑖+3 + 61𝜃𝑖+4−10𝜃𝑖+5) + 𝑂(ℎ4)             (13)                                                                        

Backward finite-difference formulas for first and second derivative: 

✓ 𝜃′ =
1

2ℎ
(3𝜃𝑖 − 4𝜃𝑖−1 + 𝜃𝑖−2) + 𝑂(ℎ2)                                                                                (14) 

✓ 𝜃′′ =
1

ℎ2
(2𝜃𝑖 − 5 𝜃𝑖−1 + 4𝜃𝑖−2−𝜃𝑖−3) + 𝑂(ℎ2)                                                                  (15) 

✓ 𝜃′ =
1

12ℎ
(25𝜃𝑖 − 48𝜃𝑖−1 + 36𝜃𝑖−2 − 16𝜃𝑖−3 + 3𝜃𝑖−4) + 𝑂(ℎ4)                                       (16) 

✓ 𝜃′′ =
1

12ℎ2
(45𝜃𝑖 − 154 𝜃𝑖−1 + 214𝜃𝑖−2−156𝜃𝑖−3 + 61𝜃𝑖−4−10𝜃𝑖−5) + 𝑂(ℎ4)              (17)                                                     

Central finite-difference formulas for first and second derivative: 

✓ 𝜃′ =
1

2ℎ
(𝜃𝑖+1 − 𝜃𝑖−1) + 𝑂(ℎ2)                                                                                             (18) 

✓ 𝜃′′ =
1

ℎ2
( 𝜃𝑖+1 − 2𝜃𝑖+𝜃𝑖−1) + 𝑂(ℎ2)                                                                                   (19) 

✓  𝜃′ =
1

12ℎ
(−𝜃𝑖+2 + 8𝜃𝑖+1 − 8𝜃𝑖−1 + 𝜃𝑖−2) + 𝑂(ℎ4)                                                            (20) 

✓ 𝜑′′ =
1

12ℎ2
(− 𝜃𝑖+2 + 16𝜃𝑖+1 − 30𝜃𝑖 + 16𝜃𝑖−1−𝜃𝑖−2) + 𝑂(ℎ4)                                          (21) 
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 SIMULATION RESULTS 

To demonstrate the accuracy of the new technique ((FOFDM), the current results are presented as 

tables. The convergence and stability of the new technique are tested by comparison with an with a 

closed-form method.  These results in tables (1-2) show that the (FOFDM) is a very effective and 

powerful method. Tables (1-2) show absolute error 1 (A.E.1) between exact solution (Laplace 

Transform) and (FOFDM). Also, tables (1-2) show absolute error 2 (A.E.2) between exact solution 

(Laplace Transform) and (SOFDM). From the results shown in the tables (1-2), it became clear to us 

the following: 

I. These results show the uniqueness, convergence, and stability of the new technique by 

comparisons with the fourth-order accurate finite-difference solution (FOFDM) and exact 

solution. 

II. The results of a new method (FOFDM) are very close to the results of the exact method more 

than the results of (SOFDM). 

III. Absolute error 1 (A.E.1) is observed as less than absolute error 2 (A.E.2), which confirms what 

was mentioned in (I). 

IV. (FOFDM) is really an excellent agreement with the exact method. 

 

Table 1: Comparison (Exact) with (FOFDM) and (SOFDM) for problem (1). 

𝛈 Exact FOFDM SOFDM A.E.1 A.E.2 

0 1 1 1 0 0 

0.1 0.699168879416016 0.69916887941840 0.62971880235996 -2.3*10−12 6.9*10−2 

0.2 0.4728720308970179 0.47287203090030 0.36179517895014 -3.2*10−12 1.1*10−1 

0.3 0.305695161042993 0.30569516104626 0.17432159427595 -3.2*10−12 1.3*10−1 

0.4 0.1851992578818620 0.18519925788477 0.04968078219687 -2.9*10−12 1.3*10−1 

0.5 0.1013640257081071 0.10136402571037 -0.02626231546449 -2.2*10−12 1.2*10−2 

0.6 0.0461338484947412 0.04613384849639 -0.06481924369983 -1.6*10−12 1.1*10−2 

0.7 0.01304754049420133 0.01304754049530 -0.07501471308152 -1.0*10−12 8.8*10−2 

0.8 -0.0030634452640600 -0.00306344526342 -0.06402362912203 -6.3*10−13 6.0*10−2 

0.9 -0.0063208877003827 -0.00632088770010 -0.03752676076915 -2.7*10−13 3.1*10−2 

1 0 0 0 0 0 
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Table 2: Comparison (Exact) with (FOFDM) and (SOFD) for problem (2). 

𝜼 Exact FOFDM SOFDM A.E.1 A.E.

2 

0 0 0 0 0 0 

0.1 0.184699086065509 0.18475596764058 0.1850377439891 -5.6*10−5 -3.3*10−4 

0.2 0.366744895735082 0.36685111001490 0.3673772638166 -1.0*10−4 -6.310−4 

0.3 0.542592187701892 0.54273901143483 0.5434663270244 -1.4*10−4 -8.7*10−4 

0.4 0.707554527675984 0.70773171479718 0.7086094341953 -1.7*10−4 -1.0*10−4 

0.5 0.855589759660069 0.85578514124969 0.8567529824432 -1.9*10−4 -1.110−3 

0.6 0.979048586552162 0.97924761029620 0.9802334859247 -1.9*10−4 -1.1*10−3 

0.7 1.068380692250951 1.068565891212193 1.0694832783615 -1.8*10−4 -1.110−3 

0.8 1.111792028600031 1.111942408476771 1.1126873126804 -1.5*10−4 -8.9*10−4 

0.9 1.094845970850082 1.094936301926755 1.0953837520562 -9.0*10−5 -5.3*10−4 

1 1 1 1 0 0 

 

 CONCLUSION: 

This paper presented a new technique to find the exact solution for boundary value problems using 

Laplace Transform and a more accurate solution using finite difference method. Numerical algorithm 

methods are very high accuracy with a closed-form method. The novelty of the present method is that 

it is using Laplace Transform to solve boundary value problems. numerical methods and then uses 

Laplace transform method to find approximate the exact solution. The uniqueness, convergence, and 

stability of the new numerical technique are verified and tested by comparisons with a closed-form 

method and second-order finite difference (SOFDM) solution. The provided comparisons highlight 

the effectiveness of the new approach, which is convergent, stable, and highly accurate. 
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