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ABSTRACT 

The load-deformation characteristics of flexural members are very important in designing 

reinforced concrete structures. In most cases the dimensions of structural elements are governed by 

the allowable deflections to comply with the serviceability limit state provisions. Flexural rigidity 

represents a governing factor in the member deflection calculation. Due to cracking and the non-

linear behavior of concrete, the flexural rigidity changes during loading history. Most current Codes 

recommend using the concept of equivalent moment of inertia and concrete elastic modulus for 

calculating immediate deflections. The aims of this research are: investigating the load-deformation 

characteristics taking into account the non-linear behavior of concrete; and introducing a simple 

method for estimating the flexural rigidity of reinforced concrete rectangular sections. A parametric 

study is carried out on groups of rectangular reinforced concrete sections for checking its flexural 

rigidity. Using regression analysis on the results of parametric study, empirical formula for 

estimating flexural rigidity is obtained. Also, a mathematical approach and design-aids charts are 

prepared for evaluating the flexural rigidity. Comparison of the results obtained using the proposed 

techniques with the nonlinear analysis results shows good agreement. 

Keywords- flexural rigidity; moment-curvature; ductile failure; non-linear behavior; 

mathematical approach. 

 

 

https://ijaebs.journals.ekb.eg/


IJAEBS - Volume 5, Issue 1, February 2024, (p. 22-38). DOI: 10.21608/IJAEBS.2024.266205.1091 23 

 INTRODUCTION 

The immediate deflections of structural members depend on the flexural rigidity (EI). In 

reinforced concrete members, cracks have a significant influence on the value of the moment of 

inertia (I). Before cracking, the flexural rigidity can be evaluated using concrete elastic modulus 

and the moment of inertia of the gross uncracked section. For bending moments great enough to 

produce tensile stresses greater than the modulus of rupture, cracks will form reducing the moment 

of inertia (Icr). Between cracks, concrete carry some tension, because tension is transformed from 

steel to concrete by bond and a sufficient length is required for the tensile stress in concrete to reach 

the modulus of rupture before cracking again. The tension carried by concrete between cracks will 

tend to stiffen the member [1] [2]. Also, in the regions of small bending moments, the member is 

still uncracked. The present research aims to estimate the flexural rigidity of rectangular sections 

for different load levels taking into account cracking and concrete non-linear behavior. The load-

deformation characteristics of flexural members will be examined. Such characteristics are mainly 

dependent on the moment-curvature characteristics of the sections, since most of the deformations 

of members of normal proportions arise from strains associated with flexure. 

 CODE METHOD 

The Egyptian Code for the Design and Construction of Concrete Structures (ECP-203) [3] and 

the ACI 318-89 [4] use the concept of equivalent moment of inertia and concrete elastic modulus 

for calculating immediate deflections [5] [6]. The equivalent moment of inertia can be estimated 

according to the following equation: 

cr

a

cr
g

a

cr
e I

M

M
I

M

M
I

























−+










=

33

1

 

(1) 

where Ig is the moment of inertia of the gross uncracked section, Icr is the moment of inertia of 

the cracked section, Ma is the applied moment at stage at which the deflection is required, and Mcr 

is the cracking moment, given by 
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where fctr is the modulus of rupture of concrete, and yt is the distance between the centroidal 

axis of gross section and the fiber of maximum tensile stress [7] [8]. The ECP defines the concrete 

elastic modulus to be: 

cuc fE 4400=
 (3) 

where fcu is the concrete compressive characteristic strength (N/mm2). 
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 MOMENT-CURVATURE RELATIONSHIPS 

The relationship between moment M and curvature φ (the rotation per unit length) is given by 

the following classical elastic equation [9] [10]: 



M
EI =

 
(4) 

For a small element of length dx of the member, the curvature can be given by: 

dc

scc 


+
==

 
(5) 

where εc is concrete strain at the extreme compression fiber, εs is the strain in tension steel, c is 

the neutral axis depth, and d is the depth of tension steel. The behavior of the section after cracking 

depends mainly on the steel content.  

The theoretical moment-curvature curves for reinforced concrete sections are determined 

considering the following assumptions [11] [12]: plane sections before bending remain plane after 

bending; and the stress-strain curves of concrete and steel are taken as the idealized curves 

recommended by ECP. The stress-strain curve of concrete in compression is idealized by a 

parabolic curve up to a strain of 0.002 and a straight horizontal line of stress 0.67fcu up to a strain 

of 0.003. The parabolic curve and the modulus of rupture of concrete are expressed by: 
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)/(6.0 2mmNff cuctr =  (7) 

The stress-strain curve of steel, in both tension and compression, is represented by an 

elastoplastic curve with elastic modulus Es = 200000 N/mm2 up to the yield stress. 

A program is designed to calculate moments and curvatures for rectangular sections using 

iterative technique [13]. First, the cracking moment is determined by assuming the strain at the 

extreme tension fiber equals cracking strain. Then, the section is divided into strips and the neutral 

axis depth is assumed as shown in Fig. 1 [14] [15]. The strain at each strip is determined according 

to the distance from the neutral axis. The stresses in each strip are calculated using the suggested 

stress-strain curves. The tensile stresses in the concrete fibers are taken into account. The total 

tensile and compressive forces are determined. The equilibrium between tensile and compressive 

forces is checked, and then the neutral axis depth is modified until equilibrium. At equilibrium, the 

internal moment and the associated curvature are calculated. 
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Figure 1. Example of the analyzed sections. 

Second, to change form the uncracked to cracked section the movement of the neutral axis depth 

is checked gradually. The strain in the tension steel is increased by a small amount and again the 

strains at each strip and the total tensile and compressive forces are determined according to an 

assumed neutral axis depth. The process is repeated until equilibrium. At each step, the stresses in 

the strips at the tension zone are checked to take into account the tensile stresses in the uncracked 

strips directly below the neutral axis. Third, the process is continued until the strain at tension steel 

reaches the yield strain. Similarly, the yielding moment and the associated curvature are determined. 

Finally, in the same manner, the ultimate moment and curvature are estimated. 

3.1 Investigated Parameters 

The program is used to obtain the moment-curvature relationships for different rectangular 

sections. In the present research, the investigated parameters are the concrete compressive 

characteristic strength (fcu), the yield stress of reinforcing steel (fy), the reinforcement ratio (μ), the 

ratio of compression steel (α), and the ratio between the depths of both compression and tension 

steel (d'/d). 

The concrete compressive characteristic strength is taken 25, 30, 35, 40, and 45 N/mm2, while 

the reinforcement yield stress is taken as 240, 280, 360, and 400 N/mm2. The reinforcement ratio 

varies between the minimum and maximum values according to the requirements of the ECP. The 

ratio of compression steel is taken 0.1, 0.2, 0.3, and 0.4. The ratio (d'/d) is varied according to the 

section dimension and the volume of reinforcing steel in tension and compression. 

 ANALYSIS OF RESULTS 

4.1 Schematic Moment-Curvature Curve 

More than six hundred sections are analyzed by the program and the results are obtained and 

represented to evaluate the effect of the investigated parameters. The moment-curvature curve for 

each case is represented by more than four hundred points. Figure 2 represents a schematic curve 

of the obtained moment-curvature relationships. From the figure, it can be noticed that the curve 
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starts with a straight line with an initial flexural rigidity up to the point of first cracking (cracking 

point). Once cracks have developed, the initial flexural rigidity disappears and a sharply inclined 

small straight line represents the relationship. This line is inclined and not horizontal. The line 

represents moving the neutral axis from uncracked to cracked section. The first point is the first 

cracking point, i.e. at Mcr. The second point of that line has larger moment and curvature because 

the parts between the extreme tension fiber and the neutral axis are still able to carry some tensile 

stresses until reaching its tensile strength. This line may be titled as crack propagation line. 

 

Figure 2. Schematic curve for the obtained moment-curvature relationship. 

For the cracked section, the moment-curvature relationship is represented by approximately 

straight line up to the yielding point [16]. Yielding point represents the moment and curvature when 

the tension steel reaches to yield. After yielding, it can be noticed a small increase in moment 

accompanied with large increase in curvature up to ultimate point. Some texts and researches 

represent the moment-curvature relationship by trilinear relationship as shown in Fig. 3-a. The first 

part is up to cracking, the second to yield of the tension steel, and the third to the ultimate point. 

This relationship neglects the stage of moving the neutral axis from uncraked case to cracked one. 

Figure 3-b explains that the part after cracking to yielding point have approximately the same 

flexural rigidity. This behavior cannot be noticed in the classical relationship. From Fig. 3-b, the 

flexural rigidity of the section after cracking and up to yielding can be expressed as: 
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(a) Classical moment-curvature 

relationship. 

(b) Proposed moment-curvature 

relationship. 

Figure 3. Moment-curvature relationships. 

 

The previous remarks are noticed for all the obtained curves for different parameters. Figure 4 

shows schematic curves for different reinforcing ratios, which increase from μ1 to μ4. 

 

Figure 4. Schematic moment-curvature curves for different reinforcing ratios. 

4.2 Internal Forces 

For each case study, the internal forces are examined. Figure 5-a represents the internal forces 

in compression steel (Cs) for fcu = 25 N/mm2, fy = 360 N/mm2 and compression steel ratio α = 0.1. 

The figure represents the internal forces in compression steel at yielding as a ratio from the tension 

steel forces (T) for different ratios (d'/d) and different reinforcing ratios (μ). In addition, the figure 

represents the obtained results for groups of two different cross-sections (different b and t). From 

this figure, it can be noticed that, first, the same outputs are obtained for different cross sections. 
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Second, the behavior of the sections is the same for different reinforcing ratio, i.e., linear with 

approximately the same slop, but with different constants of relation. The same remarks are 

obtained for different values of α. Figure 5-b represents the effect of compression steel ratio on the 

internal force (Cs). It can be concluded that the slope of the line depends on the compression steel 

content. The same results are obtained for different concrete compressive characteristic strength. 

The effects of concrete strength and yield stress are represented in Fig. 6. As noticed from Fig. 6-a, 

the constant of the linear relationships depends non-linearly on the concrete strength. Figure 6-b 

represents the slight effect of the yield stress on the ratio (Cs/T). From this figure, it can be noticed 

that increasing the yield stress from 240 N/mm2 to 400 N/mm2 increases the ratio Cs/T by about 

0.003. 

  

(a) α = 0.1, fcu = 25 N/mm2, and fy = 360 

N/mm2 

(b) μ = 0.3%, fcu = 25 N/mm2, and fy = 

360 N/mm2 

Figure 5. Internal forces in compression steel. 

  

(a) α = 0.1, μ = 0.9%, and fy = 360 N/mm2 (b) α = 0.1, μ = 0.9%, and fcu = 25 N/mm2 

Figure 6. Internal forces in compression steel. 
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The previous observations can be explained mathematically as following: 
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(10) 

As shown in Eqs. (9) and (10), the ratio (Cs/T) depends on the compression steel ratio (α), the 

ratio of the neutral axis depth to the section depth (c/d), and the depth ratio of both compression 

and tension steel (d'/d). In addition, the force in both compression steel (Cs), concrete in 

compression zone (Cc), and tension steel (T) are balanced. These forces depend on concrete strength 

and reinforcing ratio. 

The moment of internal forces, at yielding point, are obtained, and the ratios of yielding 

moments and cracking moments, calculated by using Eq. (2), are determined. Figure 7 represents 

the ratio (My/Mcr) for α = 0.1 and 0.2. From these figures, it can be noticed that the ratio (My/Mcr) 

can be considered constant for the same reinforcing ratio and different contents of compression 

steel. The same results are obtained for the cases of α = 0.3 and 0.4. The effect of concrete strength 

and yield stress on the moment ratio is illustrated in Fig. 8. From this figure it can be noticed that, 

concrete strength affects non-linearly the moment ratio (My/Mcr), while the ratio is related linearly 

to the yield stress value. 

  

(a) α = 0.1 (b) α = 0.2 

Figure 7. Yielding moments (fcu = 25 N/mm2 and fy = 360 N/mm2). 
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(a) α = 0.1, μ = 0.9%, and fy = 360 N/mm2 (b) α = 0.1, μ = 0.9%, and fcu = 25 N/mm2 

Figure 8. Yielding moments. 

 

For the studied cases, the curvatures at both cracking and yielding are calculated according to 

Eq. (5). The ratio of yielding and cracking curvatures (φy/φcr) are compared for different sections 

and reinforcing ratios as shown in Fig. 9. Due to the small values of curvatures and using crude 

values (not approximated), a slight difference can be noticed for the outputs of different sections. 

The same curvature ratios for different values of μ are obtained for the other compression steel 

contents (α = 0.2, 0.3 and 0.4). The previous behaviors are noticed for different concrete strengths, 

as illustrated in Fig. 10-a. From this figure, it can be noticed that increasing the concrete strength 

from 25 to 45 N/mm2 decreases the curvature ratio from about 11.5 to 10, which can be considered 

as a considerably slight effect. This effect is more obviously expressed in Fig. 10-b. The curvature 

ratios for different steel type are illustrated in Fig. 11. The curvature ratio is related linearly to the 

yield stress value.  

 

Figure 9. Curvature ratio (α = 0.1, fcu = 25 N/mm2, and fy = 360 N/mm2). 
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(a) (b) 

Figure 10. Curvature ratio (α = 0.1, μ = 0.9 %, and fy = 360 N/mm2). 

 

Figure 11. Curvature ratio (α = 0.1, μ = 0.9 %, and fcu = 25 N/mm2). 

The flexural rigidity of the studied sections is calculated for the loading part from cracking to 

yielding (the line shown in Fig. 3-b) as My/φy. Figure 12 represents the ratio of the calculated 

flexural rigidity and the flexural rigidity of uncracked section (EI /EcIg). Approximately, the same 

ratio can be noticed for the same reinforcing ratio and different compression steel content. The same 

observations are found for both α = 0.3 and 0.4. Figure 13 explains the effect of concrete strength 

and yield stress on the flexural rigidity ratio. As shown in Fig. 13-a, increasing the concrete strength 

from 25 to 45 N/mm2 decreases the ratio by about 0.04. For different steel types, the ratio of flexural 

rigidity ranges around 0.35 for yield stresses from 240 to 400 N/mm2, as noticed from Fig. 13-b.  

From these figures it can be said that, for reinforced concrete rectangular sections with different 

dimensions the flexural rigidity ratio depends mainly on the concrete compressive characteristic 

strength and the reinforcing ratio. 

8

9

10

11

12

0 0.1 0.2 0.3 0.4
d' / d

φ
y
 /

 φ
cr

fcu=25

fcu=30

fcu=35

fcu=40

fcu=45

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 25 50 75 100

φ / φcr

M
 /

 M
cr

fcu=25

fcu=30

fcu=35

fcu=40

fcu=45

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4

d' / d

φ
y
 /

 φ
cr

fy=240

fy=280

fy=360

fy=400



IJAEBS - Volume 5, Issue 1, February 2024, (p. 22-38). DOI: 10.21608/IJAEBS.2024.266205.1091 32 

  

(a) α = 0.1 (b) α = 0.2 

Figure 12. Ratio of flexural rigidity (fcu = 25 N/mm2 and fy = 360 N/mm2). 

  

(a) (α = 0.1, μ = 0.9 %, and fy = 360 

N/mm2) 

(b) (α = 0.1, μ = 0.9 %, and fcu = 25 

N/mm2) 

Figure 13. Ratio of flexural rigidity. 
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linearly to the reinforcing ratio. The flexural rigidity ratios for different concrete strengths are 
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for reinforced concrete members), it is found that the shift between the flexural rigidity ratios (from 

the datum value) for different concrete strengths is: 
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( )( )125/05.0 −= cuf  (11) 

where Δ is the shift of the flexural rigidity ratio, and fcu is expressed in N/mm2. For the effect 

of reinforcing ratio, it is found that the relation can be well expressed in a natural logarithm form. 

The proposed empirical formula for estimating the ratio of the flexural rigidity of a rectangular 

section with concrete strength fcu (expressed in N/mm2) and a reinforcing ratio μ (%) is: 

( ) 37.0ln17.0 +−= 
gc IE

EI
 (12) 

 MATHEMATICAL APPROACH 

Another technique depends on evaluating the ratio (Cc/T), then using assumptions and 

equilibrium equations; the flexural rigidity can be estimated. The ratio (Cc/T) can be determined as 

following: 
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According to the assumed concrete stress-strain curve, the compressive force in concrete can be 

determined as: 
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The ratio (Cc/T) obtained by both Eqs. (13) and (19) must be the same, i.e., it is required now 

to get the ratio (c/d) that makes the difference between the outputs of Eqs. (13) and (19) tends to 

zero. Figure 14 shows a schematic diagram for the curves of both Eqs. (13) and (19) and the required 

intersection point. A group of charts for different values of yield stress and compressive strength 
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can be prepared for using in codes. Figure 15 represents a sample of (c/d) chart for 360 N/mm2 yield 

stress, 25 N/mm2 concrete compressive strength and different values of reinforcing ratio and 

compression steel content. The chart can be used for obtaining estimation for the ratio (c/d). For 

higher degrees of accuracy, Eqs. (13) and (19) can be used to increase the accuracy of the obtained 

ratio. Then, using Eq. (10) the value Cs can be determined and the yield moment and the yield 

curvature can be estimated as following: 
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Knowing the yield moment and curvature, the flexural rigidity can be estimated from Eq. (8). 

 

 

Figure 14. Schematic diagram for Eqs. (13) and (19). 
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Figure 15. Chart of (c/d) (fcu = 25 N/mm2 and fy = 360 N/mm2). 

 EVALUATING PROPOSED APPROACHES 

To asses the accuracy of the proposed formula and the suggested approach, a verification study 

is carried-out. The flexural rigidity of the investigated sections, in the parametric study, is calculated 

using the proposed formulae and the obtained results are compared with that obtained by the 

iterative method. Figure 16-a represents the ratio of the flexural rigidity obtained by using Eq. (12) 

and the calculated ones (by iterative method). From the figure, it can be noticed that the results are 

very close to the equality line. Investigating the results it is found that, the ratio of the proposed 

results and the calculated ones ranges from 0.94 to 1.06 with 1.02 average value, 1.02 median value, 

1.01 mode value, 0.02 standard deviation, and 2% coefficient of variance. Figure 16-b represents 

the histogram of the proposed formula results. 

  

(a) Proposed and calculated flexural 

rigidities. 

(b) Histogram of the results of the 

proposed formula. 

Figure 16. Results of flexural rigidity proposed formula. 
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The flexural rigidities of the studied sections are estimated using the proposed mathematical 

approach. Figure 17-a represents the ratio of the flexural rigidity obtained by using the mathematical 

approach and the calculated ones. From the figure, it can be noticed that the results are very close 

to the equality line. Investigating the results it is found that, the ratio of the proposed results and the 

calculated ones ranges from 0.99 to 1.04 with 1.007 average value, 1.006 median value, 1.005 mode 

value, 0.004 standard deviation, and 0.4% coefficient of variance. Figure 17-b represents the 

histogram of the proposed formula results. 

  

(a) Proposed and calculated flexural 

rigidities. 

(b) Histogram of the results of the 

proposed mathematical approach. 

Figure 17. Results of flexural rigidity mathematical approach. 

The flexural rigidities of the studied sections are estimated using Eq. (1) and compared with the 

calculated ones. The applied moments are taken as the yield moment. It is noticed that Eq. (1) 

overestimates the flexural rigidities with ratios ranged from 1.37 to 5.17 with 1.79 average value, 

1.54 median, 1.75 mode value, 0.61 standard deviation, and 33% coefficient of variance. 

 CONCLUSIONS 

Investigating the moment-curvature relationships of different rectangular reinforced concrete 

sections using iterative method and taking into account the non-linear behavior of concrete shows 

that: 

1. The crack propagation concept has a great effect in the load-deformation characteristics of 

flexural members.  

2. Crack propagation concept leads to different moment-curvature scheme from the classical 

ones. 

3. The flexural rigidities estimated using the proposed formula and the proposed mathematical 

approach show good agreement with the calculated ones (using iterative method). 
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4. The concept of equivalent moment of inertia and concrete elastic modulus for calculating 

immediate deflections gives results that follow the classical scheme of moment-curvature 

relationship. 
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